3の倍数(9の倍数)の判定の証明 4桁の自然数で証明するが、一般の自然数も同様に証明できる。 4桁の自然数は 1000a + 100b + 10c + d と表せる。 ここで a, b, c, d は 0 から 9 の整数で、a は 0 ではない。 1000a + 100b + 10c + d = 999a + 99b + 9c + ( a + b + c + d ) と変形すると前の部分は9の倍数なので3の倍数。 よって a + b + c + d が3の倍数なら元の数も3の倍数であり、9の倍数なら元の数も9の倍数。 この a, b, c, d は表れている数であるから、示される。
S(R^n) ⊂ L^1 (R^n) である. 任意の f ∈ S(R^n) をとる.急減少関数なので、 |x|^2(n+1) |u(x)| ≦ M, for any x ∈ R^n となる M が存在する. さらに,必要なら M を取り直して |u(x)| ≦ M for any x ∈ B(O;1) とできる. ∫_R^n |u(x)| dm(x) = ∫_ B(O;1) |u(x)| dm(x) + ∫_( R^n - B(O;1) ) |u(x)| dm(x) ≦ M m( B(O;1) ) + M ∫_( R^n - B(O;1) ) 1/|x|^2(n+1) dm(x) ここで先の注意を用いた.
つまり、整域 R(「ab=0」ならば「a=0 または b=0」が成り立つ可換環)で、 ノルム N : Rー{0} → N(自然数の集合)が定義されているとする。 このとき次の2条件を満たすとき R をユークリッド整域という。 1)割り算の原理が成り立つ。すなわち,a, b ∈ Rー{0} ならば a = b q + r および 0 < N(r) < N(b) が成り立つ q, r ∈ R が存在する。 2)a, b ∈ Rー{0} に対して,N(a) < N(ab) が成り立つ。